
1

 Multi-threaded, discrete event simulation
 of distributed computing systems

 The MONARC Collaboration

 Abstract

The LHC experiments have envisaged computing systems of unprecedented com-
plexity, for which is necessary to provide a realistic description and modelling of
data access patterns, and of many jobs running concurrently on large scale distrib-
uted systems and exchanging very large amounts of data.
A process oriented approach for discrete event simulation is well suited to
describe various activities running concurrently, as well the stochastic arrival pat-
terns specific for such type of simulation. Threaded objects or “Active Objects”
can provide a natural way to map the specific behaviour of distributed data pro-
cessing into the simulation program.

The simulation tool developed within MONARC[1] is based on Java(TM) [2]
technology which provides adequate tools for developing a flexible and distrib-
uted process oriented simulation. Proper graphics tools, and ways to analyze data
interactively, are essential in any simulation project.
The design elements, status and features of the MONARC simulation tool are
presented. The program allows realistic modelling of complex data access pat-
terns by multiple concurrent users in large scale computing systems in a wide
range of possible architectures, from centralized to highly distributed. Compari-
son between queueing theory and realistic client-server measurements is also pre-
sented.

1. Introduction

The aim of this paper is to describe the simulation program, being developed by the
MONARC project, as a design and optimization tool for large scale distributed computing
system for future LHC experiments. The goals are to provide a realistic simulation of dis-
tributed computing systems, customized for specific physics data processing and to offer
a flexible and dynamic environment to evaluate the performance of a range of possible
data processing architectures.
An Object Oriented design, which allows an easy and direct mapping of the logical com-
ponents into the simulation program and provides the interaction mechanism, offers the
best solution for such a large scale system and also copes with systems which may scale
and change dynamically. A discrete event, process oriented simulation approach, devel-

oped in Java(TM) was used for this modelling project. A complex Graphical User Interface
(GUI) to the simulation engine, which allows to dynamically change parameters, load
user’s defined time response functions for different components and to monitor and ana-
lyze simulation results, provides a powerful development tool for evaluating and design-
ing large scale distributed processing systems.

2

2. Design Considerations of the simulation program

The simulation and modelling task for MONARC requires the description of complex
data processing programs, running on large scale distributed systems and exchanging very
large amounts of data. A process oriented approach for discrete event simulation is well
suited to describe concurrent running programs as well as all the stochastic arrival pat-
terns, characteristic for such type of simulations. Threaded objects or “Active Objects”
(having an execution thread, program counter, stack, mutual exclusion mechanism...)
offer much great flexibility in simulating the complex behaviour of distributed data pro-
cessing programs.

The MONARC simulation tool is built completely with Java(TM) technology which pro-
vides adequate tools for developing a flexible and distributed process oriented simulation.
Java has build-in multi-thread support for concurrent processing, which can be used for
simulation purposes by providing a dedicated scheduling mechanism. Java also offers
good support for graphics and it is easy to interface the graphics part with the simulation
code. Adequate and flexible graphics tools, and ways to analyze data interactively, are
essential in any simulation project.

Currently, many groups involved in Computer System Simulation are moving towards
Java. As an example, a well known project, Ptolemy II [3], is a complete new redesign of
the Ptolemy simulation environment in Java. The reasons for which we decided to write a
new “simulation engine” for process oriented, discrete event simulation were, first, a ded-
icated core for the simulation engine can be more efficient, and second, at the time we
started this project, no such Java based simulation frame was yet available in a sufficient
stable form. However the modular structure of this simulation package does not exclude
the possibility to be interfaced with the engines of other general simulation tools.

3. The components models

Building a general simulation tool requires the abstraction from the real system of all the
components and their time dependent interaction. This logical model has to be equivalent
to the simulated system in all important respects. This simulation frame allows one to
introduce any time dependent response function for the interacting components. Response
functions may also be dependent on the previous states of the component allowing to
describe correctly highly non-linear processes. The major components used in this simu-
lation project are described below.

3.1 Data Model

It is foreseen that all HEP experiments will use an Object Database Management System
(ODBMS) to handle the large amounts of data in the LHC era. Our data model follows the
Objectivity architecture and the basic object data design used in HEP. The model should
provide a realistic mapping of an ODBMS, and at the same time allow an efficient way to

3

describe very large database systems with a huge number of objects.

The atomic unit object is the “Data Container”, which emulates a database file containing
a set of objects of a certain type. In the simulation, data objects are assumed to be stored
in such “data container” files in a sequential order. In this way the number of objects used
in the simulation to model large number of real objects is dramatically reduced, and the
searching algorithms are simple and fast. Random access patterns, necessary for realistic
modelling of data access, are simulated by creating pseudo-random sequence of indices.
Clustering factors for certain types of objects, when accessed from different programs, are
simulated using practically the same scheme to generate a vector of intervals.

A “Database unit” is a collection of containers and performs an efficient search for type
and object index range. The Database server simulation provides the client server mecha-
nism to access objects from a database. It implements response time functions based on
data parameters (page size, object size, access is from a new container, etc.), and hard-
ware load (how many other requests are in process at the same time). In this model it is
also assumed that the Database servers control the data transfers from/to mass storage
system. Different policies for storage management may be used in the simulation. Data-
base servers register with a database catalogue (Index), used by any client (user program)
to address the proper server for each particular request. A schematic representation of
how the data access model is implemented into the simulation program is presented in
Figure 1.

This modelling scheme provides an efficient way to handle a very large number of objects
and in the same time an automatic storage management. It allows to emulate different
clustering schemes of the data for different types of data access patterns, as well as to sim-
ulate the ordered data access when following the associations between the data objects,
even if the objects reside in databases located in different database servers.

3.2 Multitasking Data Processing Model

Multitasking operating systems share resources such as CPU, memory and I/O between
concurrently running tasks by scheduling their use for very short time intervals. However,

Database server

Disk

Tape Unit

Data Base Index

...

Data Container

Data Container

 Array

...

CLIENT

Register

AMS SERVER

Figure 1:

 A schematic diagram of

data model based on

ODBMS architecture
Data Container

Data Container

Data Base

Data Container

Data Container

Data Base

...

Database server

4

simulating in detail how the tasks are scheduled in the real systems would be too complex
and time consuming, and thus it is not suitable for our purpose. Our model for multitask-
ing processing is based on an “interrupt” driven mechanism implemented in the simula-
tion engine. An interrupt method, implemented in the “Active” object which is the base
class for all running jobs, is a key part for the multitasking model. The way it works is
shown schematically in Figure 2.

When a first job starts, the time it takes is evaluated and this “Active” object enters into a
wait state for this amount of time and allows to be interrupted. If a new job starts on the
same hardware it will interrupt the first one. Both will share the same CPU power and the
time to complete for each of them is computed assuming that they share the CPU equally.
Both active jobs will enter into a wait state and are listeners to interrupts. When a job is
finished it also creates an interrupt to re-distribute the resources for the remaining ones.
This model is in fact assuming that resource sharing is done continuously between any
discrete events in the simulation time (e.g. new job submission, job completion) while on
real machines it is done in a discrete way but with a very small time interval. This pro-
vides an accurate and efficient model for multiprocessing tasks.

3.3 LAN/WAN Networking Model

Accurate and efficient simulation of networking part is also a major requirement for the
MONARC simulation project. The simulation program should offer the possibility to sim-
ulate data traffic for different protocols on both LAN and WAN. This has to be done for
very large amounts of data and without precise knowledge of the network topology (as in
the case of long distance connections). It is practically impossible to simulate the net-
working part at a packet level for such large amounts of data. User defined time depen-
dent functions are used to evaluate the effective bandwidth.

The approach used to simulate the data traffic is again based on an “interrupt” scheme
(Figure 3). When a message transfer starts between two end points in the network, the
time to completion is calculated.

 This is done using the minimum speed value of all the components in between, which can
be time dependent, and related to the protocol used. The time to complete is used to gen-
erate a wait statement which allows to be interrupted in the simulation. If a new message

T1

TASK1

TASK2

I1 I2

T2 TF1 TF2

Figure 2:

Modelling multitasking

processing based on an

“interrupt” scheme

5

is initiated during this time an interrupt is generated for the LAN/WAN object. The speed
for each transfer affected by the new one is re-computed, assuming that they are running
in parallel and share the bandwidth with weights depending on the protocol. With this
new speed the time to complete for all the messages affected is re-evaluated and inserted
into the priority queue for future events. This approach requires an estimate of the data
transfer speed for each component. For a long distance connection an “effective speed”
between two points has to be used. This value can be fully time dependent.

This approach for data transfer can provide an effective and accurate way to describe
many large and small data transfers occurring in parallel on the same network. This model
cannot describe speed variation in the traffic during one transfer if no other transfer starts
or finishes. This is a consequence of the fact that we have only discrete events in time.
However, by using smaller packages for data transfer, or artificially generating additional
interrupts for LAN/WAN objects, the time interval for which the network speed is consid-
ered constant can be reduced. As before, this model assumes that the data transfer
between time events is done in a continuous way utilizing a certain part of the available
bandwidth.

3.4 Arrival Patterns

A flexible mechanism to define the stochastic process of submitting jobs is necessary.
This is done using the “dynamic loadable modules” feature in Java which provide the sup-
port to include (threaded) objects into running code. These objects are used to describe
the behavior of a “User” or a “Group of Users”. It should be able to describe both batch
and interactive sessions, and also to use any time dependent distribution describing how
jobs are submitted. An “Activity” object is a base class for all these processes for which
current experience should be used to estimate the time dependent patterns and correla-
tions.

In order to provide a high flexibility in modelling all these activities, the user can provide
very simple sections of Java code, to override the “RUN” method of the “Activity” class.
Any number of such “Activities” can be dynamically loaded via the GUI into the
“Regional Centre” object, simulating the “Users” using the computing facilities.

Figure 3: The Networking simulation model

Network
Max Bandwidth
....

LINK

Network
A

x

y

Network
B

v

z

 N1 N2

 Bandwidth (t) = F(Protocol, LA, LB, N1(t) , N2(t) ,W(t))
 AB

W(t)

Current rate

Network
Max Bandwidth
....Current rate

LINK

6

3.5 Regional Centre Model

“Regional Centre” is a complex, composite object containing a number of data servers
and processing nodes, all connected to a LAN. Optionally, it may contain a Mass Storage
unit and can be connected to other Regional Centres. Any regional centre can instantiate
dynamically a set of “Users” or “Activity” Objects which are used to generate data pro-
cessing jobs based on different scenarios. Inside a Regional Centre different job schedul-
ing policies may used to distribute the jobs to processing nodes.

With this structure it is now possible to build a wide range of computing models, from the

very centralized (with reconstruction and most analyses at CERN) to the distributed sys-
tems, with an almost arbitrary level of complication (CERN and multiple regional centres,
each with different hardware configuration and possibly different sets of data replicated)

4. The Graphical User Interface

An adequate set of GUIs to define different input scenarios, and to analyze the results, are
essential for the simulation tools. The aim in designing these GUIs was to provide a sim-
ple but flexible way to define the parameters for simulations and the presentation of
results. In Figure 5 the frames used to define the system configuration are presented.

The number of regional centres considered can be easily changed through the main win-
dow of the simulation program. The “Global Parameters” menu allows to change the
(mean) values and their statistical distributions for quantities which are common in all

Regional Centers

PA PA PAPA ...

FARM

DISK

Mass Storage

job
job

Data Base Index

...

Physics Activities

Schedule Jobs to become active

and share the resources.

 Transparent Data Access

...
Job

Scheduler

job
Active

job
Active

CPU
...

job
Active

job
Active

CPU
...job

Active
job

Active

CPU
...

AMS AMS
LAN

WAN

Internet

job
Transfer

Generating Jobs

 via Data Base Servers

Perform multitask processing

Figure 4: A schematic view of a Regional Centre object as a composite object

job
Transfer

7

Regional Centres. The hardware cost estimates for the components of the system and can
also be obtained. From the Regional Center frame, which appears when the name of the
centre is selected in the main window, the user may select which parameters to be graphi-
cally presented (CPU usage, memory load, load on the network, efficiency, Database
servers load...). For all these results basic mathematical tools are available to easily com-
pute integrated values, mean values, integrated mean values.

5 Presenting and Publishing the Results

To facilitate publishing (storing) the simulation results, as well as all the configuration
files used to generate those results, an automatic procedure to publish results either
locally, or on a Web server, has been developed.

This Web Page offers an automatic repository for the Monarc Simulation Program. It
allows to publish the configuration files, java source code and the results (tables and
graphic output) for different simulation runs. The aim of this page is to provide an easy
way to share ideas and results for developing regional center models. A schematic view of
how this publishing mechanism is implemented is presented in Figure 6. This procedure
to automatically publish configuration files, java sources, graphical results is fully imple-
mented in Java. When the user decides to “publish” a run, the simulation program as a cli-
ent tries to find one of several dedicated servers. More than one server is used to make
this service more reliable in case one system is down. The Server implements the Remote
Method Invocation [2] mechanism and provides to each interested client the functionality
to transfer files and automatically updates the content of this Web Page [4].

Figure 5: The GUI Frames used to define the system configuration and monitor output results

8

6 Testing and Evaluating the simulation program

A number of tests have been performed to verify and test the simulation program. The full
description of the validation tests for this program are presented in an other paper [6].

A few basic comparisons tests of the simulation program results with queueing theory and
parallel client server data access measurements in real systems are presented.

6.1 Queuing Theory

6.1.1 M | M | 1 Model

This model [5] consists of queueing station where jobs arrive with a negative exponential
inter-arrival time distribution with rate .

Furthermore, the job time service requirements are also negative exponentially distributed

with mean . Simplest queueing model M/M/1 theory gives the formula for mean

RMI Server

 Writer Object

afs/nfs file system

Web Server

Figure 6: Publishing the simulation results on a web server

λ

E[S]
arrivals

waiting in service

E S[] 1
µ---=

9

number of jobs in the system and the mean response time:

where E[N] is the mean number of jobs in the system, E[R] - mean response time of the

system, E[S] - mean serve time of the system, utilization , and is mean job arrival

rate, is mean job service rate, is mean service time.

This case can be described in the simulation program as a Database server acting as a
queuing station for data requests coming from clients with the same time distribution. The
data size for each request is also distributed as a negative exponential (Marcovian pro-
cess).

The results for different input rates are shown in the Figure 7.(e.g. for , ,

so , and the mean number of jobs in the system is 1.0, which is equal to the value

obtained from the simulation.)

6.1.2 M | M | 1 network queue model

This type of queueing model consists of a chain of M | M |1 queues [5].

In this case the mean total number of jobs in the system and the mean total response time
of the network are defined by:

E N[] ρ
1 ρ–
------------= E R[] E S[]

1 ρ–()-----------------=and

ρ λ
µ---= λ

µ E S[] 1
µ
---=

λ 500= µ 1000=

ρ 0.5=

Arrival
rate

E[N],
sim

E[N]
theory

E[R]
sim

E[R]
theory

1.0 0.001018 0.001001 0.001007 0.001001

10.0 0.001018 0.001010 0.010171 0.010101

50.0 0.001034 0.001053 0.052077 0.052632

100.0 0.001137 0.001111 0.112971 0.111111

200.0 0.001232 0.00125 0.246945 0.25

300.0 0.001538 0.001429 0.461039 0.428571

500.0 0.00199 0.0020 1.00087 1.0

700.0 0.003580 0.003333 2.497969 2.333333

Figure 7: Simulation results for the M/M/1 model

arrivals
1 2 r

10

where the utilization for each stage is .

Simulating this model can easily be done by creating a sequence of jobs. This is similar
to an Analysis job which will sequentially process AOD, ESD and RAW records for each
event. As we have different record sizes for different types of data, we obtain different
service times (or service rates), assuming the speed to read pages from the disk is con-
stant. But according to Burk’s theorem the “departure process” from a stable single server
M|M|1 queue with arrival and service rates is a Poisson process. So we can apply the same
formula as for the M|M|1 case to each stage of process, and sum the mean number of jobs
and mean response time in each stage. In Figure 8, a comparison between the theoretical
predictions and the values obtained with the simulation program is presented.

6.2 Concurrent Database access

Database servers and their interaction with clients is a key element which needs to be
properly described by the simulation program. Different measurements were performed
do evaluate Objectivity’s performance and to understand the basic logical transaction pro-
tocol. Parameters for the simulation program were tuned using single client measure-
ments. The way simulation the program describes multiple concurrent clients requesting

E N[] E

i 1=

r

∑ Ni[]
ρi

1 ρi–

i 1=

r

∑= = E R[] E Ri[]

i 1=

r

∑ E Si[]
1 ρi–()

i 1=

r

∑= =and

ρi
λ
µi
----=

Figure 8: Simulation results for the M/M/1 queue model

11

data from the same database server is compared with measured values. In Figure 9, results
using Objectivity 5.1 on a local area network are presented.

A similar setup, but on a wide area network (CERN - CNAF) is presented in Figure 10.

A substantial number of such measurements [6] were performed using different data types
and network configuration to test and validate this simulation program. For all these test
measurements we obtained good agreement with the simulations performed to model
them.

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

16 0

18 0

0 5 10 1 5 2 0 2 5 3 0 3 5

No . o f c o n c u rre n t jo b s

M
ea

n
 T

im
e

p
er

 jo
b

 [
m

s]
Simulation Measurements

Raw Data DB
LAN

4 CPUs Client

Figure 9: Simulation results compared with concurrent client/server measurements on LAN.

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

No. of concurrent jobs

T
im

e
 [

s]

Measurements Simulation

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8

Data Traffic

12 3 4 5 6

12 3 4 5 6

Figure 10: Simulation results compared with concurrent client/server measurements on WAN.

12

7. An Example of a complex simulation

In three regional centers (symbolically named CERN, CALTECH, INFN) similar physics
analysis jobs are done, but data replication is different as indicated in Figure 11.

CERN

CALTECH

INFN

RAW
ESD
AOD
TAG

AOD
TAG

ESD
AOD
TAG

10 Physics
Analysis Groups

Analysis Groups
5 Physics

Analysis Groups
2 Physics

Figure 11: Schematic view of a simulation job for distributed data processing.

13

One physics analysis group is assumed to submit 100 jobs per day and is analyzing 4*106

events. For 2% of the events ESD records are requested and for 0.5% of the events RAW
data are used. At CERN we assume 10 physics analysis groups, at CALTECH 5, and 2 at
INFN. In each center the activity starts in the morning and more jobs are submitted in the
first part of the day. When a job needs data which are not available locally, the transfer is
done from “CERN”. Typical displays used to monitor such simulation jobs and show how
the resources are used in the system are presented schematically in Figure 11.

8. Summary

A CPU and code-efficient simulation approach to the problem of simulation of distributed
computing systems has been developed and tested within the MONARC Collaboration. It
provides a transparent way to map the distributed data processing, data transport and anal-
ysis tasks onto the simulation frame, and can describe dynamically even very complex
computing models.
The Java programming environment, used extensively to build the MONARC simulation
tool, is very well suited for developing a flexible and distributed process oriented simula-
tion, equipped with adequate graphical and statistical tools.
This simulation program is still under development to include more sophisticated meth-
ods to optimize the utilization of resources in very large scale distributed computing sys-
tems.

References

1 Monarc simulation program
 http://www.cern.ch/MONARC/sim_tool/
2 Sun Microsystems
 http://www.sun.con and http://www.javasoft.com
3 PTOLEMY II Heterogeneous concurrent modeling and design in Java
 http://ptolemy.eecs.berkeley.edu
4. Monarc simulation repository
 http://www.cern.ch/MONARC/sim_tool/Publish/publish/
5 B. R. Haverkort, Performance of Computer Communication Systems
 John Wiley & Sons Ltd., ISBN 0-471-97228-2
6 Y.Morita et al, Validation of the MONARC simulation tools
 to be presented at CHEP 2000

